(quasi)實驗結果的計量模型

==Causal Effects 估計範例==

in Angrist and Pischke (2017, JEP, p130-132),主要提出觀念的是 Dale and Kruger (2002, QJE)

他們想估計美國唸私立大學和唸公立大學的差異,用較明確的因果關係為主的估計法。

Casusal Effect: 在申請入學時,同時接到私大和州大入學許可,但最後後選擇唸私大、或州大的學生為樣本:

Yi: 全部的樣本的畢業生所得,可觀察的,其中又分為兩類

Y1i : 第 i 個樣本的「受私校教育後」所得

Y0i : 第 i 個樣本的「受州校教育後」所得

以上兩個,令

Pi: =1 if 第 i 個樣本唸私立,=0 otherwise 唸州立大學

合理的假設是,每個人在受大學教育之前,原本就有一定的能力

Y10 : 第 i 個樣本的原來能力
重點:美國私立大學教學效果,是否來自教學,還是學生的本質。

因為好學生集中去唸名私校,所以畢業後收入高,不見得是私校的努力。這個稱為 selection bias 樣本選擇偏誤。

私校的教學效果 (用大概畢業20年後的 earning 來衡量) 之差異為:

Y1i – Y0i

若教學有效的話,然後差異的平均是 β

H0 : E(Y1i – Y0i) = β>0

假設E(Y0i) = α, 即

Y0i =α + ηi

α 為學生原來的潛力, ηi是誤差,或個別差異,這個個別差異會和選私校有關係,例如家庭背景、爸媽是否畢業於私立..。
Caussal-Effect model

Yi = α+βPi+ηi

Pi 和 ηi 是(統計上)不獨立的,也就是無法滿足迴歸上原來的獨立性要求。

這個 causal-effect model 的想法創新就在此,他們提出比較不嚴格的「條件獨立性假設」(conditional independence assumption),

E(ηi|Pi,Xi) = E(ηi|Xi)

所以要找其它的可能影響畢業後所得能力的變數 X (例如 SAT 的分數…),來加入估計,觀念上是

E(ηi|Pi,Xi) = E(ηi|Xi) = E(ηi|Xi)

所以, causal-effect model 最後就變成

Yi=α+βPi+γXi+ηi

此法可建構出 unbias 和 consistent 的 β 估計,而且它有明確的意義:唸私校和唸公校的「效果差異」平均值。
==ref==

Angrist, Joshua D., and Jörn-Steffen Pischke. “Undergraduate econometrics instruction: through our classes, darkly.” Journal of Economic Perspectives, 31.2 (2017): 125-44.

Dale, Stacy Berg, and Alan B. Krueger. “Estimating the payoff to attending a more selective college: An application of selection on observables and unobservables.” The Quarterly Journal of Economics, 117.4 (2002): 1491-1527.

  1. #1 by 赵翼 on 2018/10/29 - 14:54

    需要注意的是,这里之所以能将这个公式解释为因果推断,是基于“已经将所有影响毕业后所得能力的变数纳入方程”的假设之上的。在此基础上,“选择性偏差问题”就被转化成了“依可测变量选择”的问题。然而现实中,还有很多“依不可测变量选择”的情况存在,此时如果无法测度一些关键变量的情况,就需要使用实验和随机化的方法来解决选择性偏差问题。

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: